7.2 Panel Product Guide

HELPFUL INFORMATION ON PANELS, TRIMS, PURLINS, GUTTERS AND ACCESSORIES

We promise to improve your business by accurately providing quality products right when you need them. Every time.

Visit our website for more product information, testing, energy ratings, warranties, photo gallery, roofing visualizer, and more.

Information in this catalog may vary by plant location.
Please call your salesperson to verify product availability.
Warranties 4
Panel Codes 4
Section Properties / Live \& Wind Loads 5
Fastener Spacing 6
Care and Handling 6-7
Converting Pitch to Degree 8
Square Conversions 9
Gauge and Color Codes 10
RoofTrims 11-12
Wall Trims 13
Gutters 14-15
Accessories 16-17
Secondary Framing 18-19
Standard Punch Patterns 20-21

[^0] Central States Manufacturing is not responsible for the performance of the material if it is not installed correctly.

Information contained in this booklet was in effect at the time of publication and is subject to change without notice.
7.2 panel is available with 36 " coverage in 24 ga. bare Galvalume ${ }^{\circledR}$ and five colors of 26 ga. painted and bare Galvalume ${ }^{\oplus}$. 7.2 panel is also available with $28.8^{\prime \prime}$ coverage in eighteen colors of 26 ga. painted and bare Galvalume ${ }^{\circledR}$. Prime panels come with CentralGuard protection that includes superior dent resistance, a lifetime limited paint warranty, and a 20-year substrate warranty. Bare (non-painted) panels from Central States have an acrylic coating which eliminates using oils during manufacturing, and eliminates fingerprinting and foot marking during installation. Bare, unpainted Galvalume is not warranted for uniformity in appearance, whether it be color, sheen, or spangle. If the project requires a uniform appearance, please choose a painted product.

Central States' 26 ga. steel is manufactured to meet ASTM A792 specifications for galvalume with a minimum yield of 80,000 PSI. The recommended minimum roof slope is $1 / 2: 12$ pitch. This will allow for sufficient drainage of water. For added protection, a sealant tape can be used on the laps of the panel.
7.2 (36" Coverage)

7.2 (28.8" Coverage)

PANEL CODES

PANEL PROFILE	TYPE	CODE	COLOR AVAILABILITY
$7.2-36^{\prime \prime}$ Coverage	24 Gauge Ultra	724 (color)	GL
$7.2-36^{\prime \prime}$ Coverage	26 Gauge Prime	726 (color)	BI, BS, CH, GA, GL, LS
$7.2-28.8$ Coverage	26 Gauge Prime	7N6(color)	all

WARRANTIES

WARRANTIES

Warranties are available in paper format and downloadable from our website. After the job is complete, fill out a warranty with your contractor/installer details and the Central States order number. Give the warranty to the building owner to keep for their records. Optional warranty registration is available online.

Learn more at centralstatesco.com/warranties

SECTION PROPERTIES

36" AND 28.8" WIDE, CSMI 7.2 PANEL

Gauge	Thickness (inches)	Weight (psf)	Yield Stress (ksi)	Shear Strength Va kips/ft	Top in Compression (Positive Bending)			Bottom in Compression (Negative Bending)		
					Ixx	Sxx	Ma	Ixx	Sxx	Ma
					in4/ft	in3/ft	in.kips/ft	in4/ft	in3/ft	in.kips/ft
26	0.0185	0.940	80.0	0.73	0.0713	0.0834	2.502	0.0670	0.0694	2.494
24	0.0230	1.168	50.0	1.31	0.0983	0.1215	3.637	0.0977	0.1097	3.287

Section properties and allowables are calculated in accordance with North American Specification for the Design of Cold-Formed Steel Structural Members (2012 \& 2016 Edition). I + /- is for deflection determination, $\mathrm{S}+/$ - is for bending determination \& Ma is allowable bending moment. Ma is allowable bending moment and Va is allowable shear strength of panel web elements. All values are for one foot of panel width. Minimum deliverable bare steel thickness should not be less than 0.95 of design thickness.

THEORETICAL ALLOWABLE LIVE \& WIND LOADS

SINGLE SPAN CONDITION

	26 Gauge \& 80 ksi					24 Gauge \& 50 ksi				
$\begin{aligned} & \text { Span } \\ & \text { (feet) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{LL}(\mathrm{~S}) \\ & \text { (psf) } \end{aligned}$	$\underset{(\mathrm{psf})}{\mathrm{LL}(\mathrm{D}) \mathrm{L} / 180}$	$\begin{aligned} & \text { WL (D) L/240 } \\ & \text { (psf) } \end{aligned}$	$\begin{gathered} \hline \text { WL (S) } \\ \text { (psf) } \end{gathered}$	$\underset{\substack{\text { (psf) }}}{\text { WL (D) L/180 }}$	$\begin{aligned} & \hline \mathrm{LL}(\mathrm{~S}) \\ & (\mathrm{psf}) \end{aligned}$	$\begin{gathered} \text { LL (D) L/180 } \\ \text { (psf) } \end{gathered}$	$\underset{\substack{\text { (psf) } \\ \text { WL L/240 }}}{\text { (ps) }}$	$\begin{aligned} & \hline \text { WL (S) } \\ & \text { (psf) } \end{aligned}$	$\begin{aligned} & \hline \text { WL (D) L/180 } \\ & \begin{array}{c} \text { (psf) } \end{array} \end{aligned}$
2	417.1	417.1	417.1	415.7	415.7	600.4	600.4	600.4	547.8	547.8
2.5	266.9	266.9	266.9	266.1	266.1	384.3	384.3	384.3	350.6	350.6
3	185.4	185.4	173.2	184.8	184.8	266.9	266.9	238.8	243.5	243.5
3.5	136.2	136.2	109.1	135.7	135.7	196.1	196.1	150.4	178.9	178.9
4	104.3	97.4	73.1	103.9	91.5	150.1	134.3	100.7	136.9	133.4
5	66.7	49.9	37.4	66.5	46.9	96.1	68.8	51.6	87.6	68.3
6	46.3	28.9	21.6	46.2	27.1	66.7	39.8	29.8	60.9	39.5
7	34.0	18.2	13.6	33.9	17.1	49.0	25.1	18.8	44.7	24.9

TWO SPAN CONDITION

	26 Gauge \& 80 ksi					24 Gauge \& 50 ksi				
$\begin{aligned} & \text { Span } \\ & \text { (feet) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{LL}(\mathrm{~S}) \\ & \text { (psf) } \end{aligned}$	$\underset{\substack{\text { (psf) } \\ \hline \mathrm{LL}(\mathrm{D}) \mathrm{L} / 180 \\ \hline}}{ }$	$\begin{aligned} & \text { WL (D) L/240 } \\ & \text { (psf) } \end{aligned}$	$\begin{aligned} & \hline \text { WL (S) } \\ & \text { (psf) } \end{aligned}$	$\begin{aligned} & \text { WL (D) L/180 } \\ & \text { (psf) } \end{aligned}$	$\begin{gathered} \hline \mathrm{LL}(\mathrm{~S}) \\ (\mathrm{psf}) \end{gathered}$	$\begin{gathered} \text { LL (D) L/180 } \\ \text { (psf) } \end{gathered}$	$\begin{aligned} & \text { WL (D) L/240 } \\ & \text { (psf) } \end{aligned}$	$\begin{gathered} \hline \text { WL (S) } \\ \text { (psf) } \end{gathered}$	$\begin{gathered} \hline \text { WL (D) L/180 } \\ \text { (psf) } \end{gathered}$
2	337.9	337.9	337.9	338.6	338.6	485.8	485.8	485.8	525.1	525.1
2.5	230.8	230.8	230.8	231.4	231.4	323.6	323.6	323.6	352.2	352.2
3	166.7	166.7	166.7	167.1	167.1	230.0	230.0	230.0	251.4	251.4
3.5	125.6	125.6	125.6	126.0	126.0	171.4	171.4	171.4	188.0	188.0
4	97.8	97.8	97.8	98.1	98.1	132.5	132.5	132.5	145.6	145.6
5	63.9	63.9	63.9	64.1	64.1	85.8	85.8	85.8	94.5	94.5
6	44.9	44.9	44.9	45.1	45.1	60.0	60.0	60.0	66.1	66.1
7	33.2	33.2	32.8	33.3	33.3	44.2	44.2	44.2	48.8	48.8

THREE OR MORE SPAN CONDITION

	26 Gauge \& 80 ksi					24 Gauge \& 50 ksi				
$\begin{aligned} & \text { Span } \\ & \text { (feet) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{LL}(\mathrm{~S}) \\ & \text { (psf) } \end{aligned}$	$\begin{gathered} \hline \text { LL (D) L/180 } \\ \text { (psf) } \end{gathered}$	$\begin{aligned} & \text { WL (D) L/240 } \\ & \text { (psf) } \end{aligned}$	$\begin{gathered} \hline \text { WL (S) } \\ (\mathrm{psf}) \end{gathered}$	$\begin{aligned} & \hline \text { WL (D) L/180 } \\ & \begin{array}{l} \text { (psf) } \end{array} \end{aligned}$	$\begin{aligned} & \hline \text { LL (S) } \\ & \text { (psf) } \end{aligned}$	$\underset{\substack{\text { (psf) } \\ \hline \mathrm{LL}(\mathrm{D}) \mathrm{L} / 180}}{ }$	$\begin{gathered} \text { WL (D) L/240 } \\ \text { (psf) } \end{gathered}$	$\begin{gathered} \hline \text { WL (S) } \\ \text { (psf) } \end{gathered}$	$\begin{aligned} & \hline \text { WL (D) L/180 } \\ & \begin{array}{c} \text { (psf) } \end{array} \end{aligned}$
2	376.6	376.6	376.6	377.3	377.3	550.5	550.5	550.5	592.2	592.2
2.5	260.4	260.4	260.4	261.0	261.0	369.9	369.9	369.9	401.2	401.2
3	189.6	189.6	189.6	190.1	190.1	264.4	264.4	264.4	288.2	288.2
3.5	143.7	143.7	143.7	144.1	144.1	197.8	197.8	197.8	216.4	216.4
4	112.4	112.4	112.4	112.7	112.7	153.3	153.3	153.3	168.1	168.1
5	73.8	73.8	70.6	74.0	74.0	99.6	99.6	97.3	109.5	109.5
6	52.0	52.0	40.9	52.2	51.2	69.7	69.7	56.3	76.8	74.6
7	38.6	34.3	25.7	38.7	32.2	51.5	47.3	35.5	56.8	47.0

$\mathrm{LL}(5)$ is allowable live load based on stress limitation \& LL (D) on stress \& deflection limitation of $\mathrm{L} / 180$ or $\mathrm{L} / 240$. WL (S) is allowable wind load based on stress limitation \& WL (D) on stress \& deflection limitation of L/180. Allowable wind loads based on stress have not been increased by 33.33% for wind uplift. These loads are for panel strength. Frames, purlins, fasteners and all supports must be designed to resist all loads imposed on the panel. The wind load is permitted to be taken as 0.7 times the "component and cladding" loads for the purpose of determining deflection limits. For roof panels, self weight of the panel has to be deducted from the allowable inward load to arrive at the actual 'live load' carrying capacity of the panel.

FASTENER SPACING

Fastener pattern for all conditions: interior, and panel termination (eave, endlap, valley)

7.2 (28.8" Coverage)

CARE AND HANDLING

DELIVERY

Deliveries will be made using a 65' tractor/trailer weighing approximately $80,000 \mathrm{lbs}$. It is imperative that all delivery locations be accessible by a vehicle of this size. Our drivers have the authority to refuse delivery to any location they see as unsafe or inaccessible. The customer is responsible for any charges incurred if truck is detained for any reason. The customer is responsible for unloading all trucks. Any damage that occurs at this point is the customer's responsibility. There must be equipment available to unload the truck. Moffett deliveries require at least one person to assist with unloading.

STAGE

Galvalume ${ }^{\oplus}$ steel panels have a good service life when exposed to normal weather conditions; however, to protect the appearance of panels and trims
from damage, there are a few simple precautions that can be taken. The panels are subject to stain when water sits upon, or becomes trapped between the sheets. If the Galvalume ${ }^{\oplus}$ panels are to be stored for any period of time, they should be stored only in a dry place, preferably under a roof. Stand panels on end and fan them out at the bottom to provide air circulation and moisture run off. If space does not allow this, the panels should be separated, blocked off of the floor at least 12 inches to allow air flow, and stored at an incline to encourage drainage. The panels should then be covered, yet still have good air flow through the sheets to prevent condensation. Do not use a plastic cover, as this may cause the panels to sweat or condensation to occur.

CARE AND HANDLING

STORAGE

Failure to follow these steps may result in wet storage stains and premature rusting. The manufacturers warranty will be void at this time, and the manufacturer will not be responsible.

HANDLING

When unloading panels, extreme caution must be employed. Care needs to be used when unloading panels with a forklift. Panel edges and underside paint may become damaged if the forklift driver does not use caution. Once at the job site, care must be taken in order to protect the painted surface. When unbundling the panels, never drag them across the surface of one another. This may cause scratches across the underneath panels. It is recommended that the panels be "rolled" off the top of the bundle to prevent scratching. Never lift panels by the ends, instead lift the panels longitudinally and carry vertically.

Panel edges are very sharp, therefore, safety equipment should be worn by all workers handling the material.

CUTTING

A portable field shear is the ideal method for cutting panels. Nibblers or a power shear may also be used. Although we do not recommend it, if you decide to cut with a saw, it is very important that the panels be turned upside down during cutting so that hot shavings do not come in contact with the painted surface. Make sure all adjacent panels are covered so that shavings are not imbedded in these panels. If metal shavings become imbedded in the paint surface, they will quickly rust. To avoid this, panels should be thoroughly wiped of all filings on both sides of the panel. Failure to comply with the recommended cutting procedures releases the manufacturer of any responsibility.

DRILLING

Panels and trim should not be drilled while stacked. This will cause shavings that will become imbedded in the paint surface.

$$
\begin{gathered}
\text { Shavings created by } \\
\text { saw cutting or drilling } \\
\text { may cause the panel to rust } \\
\text { and will void warranties in } \\
\text { affected areas. }
\end{gathered}
$$

CONVERTING PITCH TO DEGREE

Use these charts to calculate degrees when designing custom trim. Please specify pitch when ordering.

SINGLE SLOPE PITCHES
Fascia, Eave, Endwall, Tie-In, Gutter

DOUBLE SLOPE PITCHES
Hip, Valley

RIDGE CAP

$\begin{aligned} & \text { 1:12 } \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & \text { 2:12 } \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & \text { 3:12 } \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & 4: 12 \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & \text { 5:12 } \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & \text { 6:12 } \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & \text { 7:12 } \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & \text { 8:12 } \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & \text { 9:12 } \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & \text { 10:12 } \\ & \text { PITCH } \end{aligned}$	$\begin{aligned} & 11: 12 \\ & \text { PITCH } \end{aligned}$	12:12
94°	99°	104°	108°	112°	116°	120°	123°	126°	129°	132°	135°
173°	167°	160°	154°	148°	143°	138°	134°	130°	126°	123°	120°
170°	161°	152°	143°	135°	127°	120°	113°	106°	100°	95°	90°

SQUARE CONVERSIONS

There are 2 formulas used in square conversions; one for panels measured in inches and one for panels measured in feet. Squares are figured based on the actual width of a panel, not it's coverage. One square is equal to 14,400 square inches.
7.2 panel with 36 " of coverage has an actual width of $38.875^{\prime \prime}$. One square is equal to a panel 30.868 feet long.

One square of metal will give you approximately 92.6 square feet of coverage.

EXAMPLE 1:
38.875 (or width in inches) multiplied by length in inches multiplied by \# of pieces divided by 14,400

Number of panels $=12 \quad 38.875^{\prime \prime} \times 144^{\prime \prime} \times 12 \quad$ equals 4.67 squares
Panel width $=38.875^{\prime \prime}$
Panel length $=144^{\prime \prime}$
Square inches $=14,400$

EXAMPLE 2:

length in feet multiplied by \# of pieces divided by 30.868

Number of panels $=12$	12×12	
Panel width $=38.875^{\prime \prime}$	30.868	equals 4.67 squares of metal
Panel length $=12^{\prime}$		

7.2 panel with $\mathbf{2 8 . 8}$ " of coverage has an actual width of 37.313 ". One square is equal to a panel 32.174 feet long. One square of metal will give you approximately 77.2 square feet of coverage.

EXAMPLE 1:
37.313 (or width in inches) multiplied by length in inches multiplied by \# of pieces divided by 14,400

Number of panels $=12 \quad \frac{37.313^{\prime \prime} \times 144 " \times 12}{} \quad$ equals 4.48 squares
Panel width = 37.313"
Panel length $=144^{\prime \prime}$
Square inches $=14,400$

EXAMPLE 2:

length in feet multiplied by \# of pieces divided by 32.174

Number of panels $=12$

Panel width $=37.313^{\prime \prime}$

| 12×12 | 32.174 |
| :--- | :--- |\quad| equals 4.48 squares |
| :--- |
| of metal |

Panel length $=12^{\prime}$

COMMON RAFTER LENGTHS (PEAKTO SIDEWALL)

Running Feet	1:12 Pitch	2:12 Pitch	3:12 Pitch	4:12 Pitch	5:12 Pitch	6:12 Pitch
1	$1^{\prime} 0$ "	$1^{1} 1 / 8^{\prime \prime}$	1'3/8"	1'5/8"	1'1'	$1^{\prime} 1-3 / 8{ }^{\prime \prime}$
2	$2^{\prime} 1 / 8^{\prime \prime}$	$2^{\prime} 3 / 8^{\prime \prime}$	$2^{\prime} 3 / 4^{\prime \prime}$	$2^{\prime} 1-1 / 4^{\prime \prime}$	2'2"	$2^{\prime} 2-7 / 8^{\prime \prime}$
3	$3^{\prime} 1 / 8^{\prime \prime}$	$3^{1} 1 / 2^{\prime \prime}$	$3^{\prime} 1-1 / 8^{\prime \prime}$	$3^{\prime} 2^{\prime \prime}$	3'3"	$3^{\prime} 4-1 / 4^{\prime \prime}$
4	$4^{\prime} 1 / 8^{\prime \prime}$	$4^{\prime} 5 / 8^{\prime \prime}$	$4^{\prime} 1-1 / 2^{\prime \prime}$	$4^{\prime} 2-5 / 8^{\prime \prime}$	4'4"	$4^{\prime} 5 / 8^{\prime \prime}$
5	$5^{\prime} 1 / 4^{\prime \prime}$	5'7/8'	$5^{\prime} 1-7 / 8^{\prime \prime}$	5'3-1/4"	5'5"	$5^{\prime} 7-1 / 8{ }^{\prime \prime}$
6	$6^{1} 1 / 4^{\prime \prime}$	$6^{\prime} 1{ }^{\prime \prime}$	$6^{\prime} 2-1 / 4^{\prime \prime}$	$6^{\prime} 3-7 / 8^{\prime \prime}$	6'6"	$6^{\prime} 8-1 / 2^{\prime \prime}$
7	$7^{\prime} 1 / 4^{\prime \prime}$	$7^{\prime} 1-1 / 8^{\prime \prime}$	7' 2-5/8"	$7^{\prime} 4-1 / 2^{\prime \prime}$	7'7"	$7^{\prime} 9-7 / 8^{\prime \prime}$
8	8'3/8"	$8^{\prime} 1-3 / 8{ }^{\prime \prime}$	8'3"	$8^{\prime} 5-1 / 4^{\prime \prime}$	8'8"	$8^{\prime} 11-3 / 8^{\prime \prime}$
9	9'3/8"	$9^{\prime} 1-1 / 2^{\prime \prime}$	$9^{\prime} 3-3 / 8^{\prime \prime}$	$9^{\prime} 5-7 / 8{ }^{\prime \prime}$	9'9"	$10^{\prime} 3 / 4{ }^{\prime \prime}$
10	$10^{\prime} 3 / 8^{\prime \prime}$	10' 1-5/8"	10' 3-3/4"	$10^{\prime} 6-1 / 2^{\prime \prime}$	10'10"	11'2-1/8"
11	$11^{1} 1 / 2^{\prime \prime}$	11'1-7/8"	11'4-1/8"	11'7-1/8"	11'11"	12'3-5/8"
12	$12^{\prime} 1 / 2^{\prime \prime}$	$12^{\prime \prime} 2^{\prime \prime}$	12' 4-3/8"	12' 7-3/4"	$13^{\prime \prime} 0^{\prime \prime}$	$13^{\prime \prime} 5^{\prime \prime}$
13	$13^{\prime} 1 / 2^{\prime \prime}$	13' 2-1/8"	13' 4-3/4"	13' 8-1/2"	$14{ }^{\prime \prime} 1$ "	14'6-3/8"
14	$14^{\prime} 5 / 8^{\prime \prime}$	14' 2-3/8"	$14^{\prime} 8-1 / 8^{\prime \prime}$	14' 9-1/8"	15'2"	15'7-7/8"
15	15'5/8"	15' 2-1/2"	15' 5-1/2"	15' 9-3/4"	$16^{\prime \prime}{ }^{\prime \prime}$	16' 9-1/4"
16	16'5/8"	16' 2-5/8"	16' 5-7/8"	16' 10-3/8"	17'4"	17' 10-5/8"
17	17' 5/8"	17' 2-7/8"	17' 6-1/4"	17' 11"	18'5"	19' 1/8"
18	18'3/4"	$18^{\prime} 3^{\prime \prime}$	18' 6-5/8"	18' $11-5 / 8{ }^{\prime \prime}$	19'6"	$20^{\prime} 1-1 / 2^{\prime \prime}$

Running Feet	1:12 Pitch	2:12 Pitch	3:12 Pitch	4:12 Pitch	5:12 Pitch	6:12 Pitch
19	19'3/4"	19'3-1/8"	$19^{\prime} 7$ "	20'3/8"	20'7"	21'2-7/8"
20	20'7/8"	20'3-3/8"	20' $7-3 / 8^{\prime \prime}$	$21^{\prime \prime} 1$	21'8"	22' 4-3/8"
21	21'7/8"	21'3-1/2"	21'7-3/4"	22' 1-5/8"	22'9"	23' 5-3/4"
22	22'7/8"	22' 3-5/8"	$22^{\prime} 8-1 / 8^{\prime \prime}$	23' 2-1/4"	$23^{\prime \prime} 10$	24'7-1/8"
23	$23^{\prime \prime} 1{ }^{\prime \prime}$	$23^{\prime} 3-3 / 4 "$	$23^{\prime} 8-1 / 2^{\prime \prime}$	$24^{\prime \prime} 3$	$24^{\prime \prime 1}{ }^{\prime \prime}$	25' 8-5/8"
24	$24^{\prime \prime} 1{ }^{\prime \prime}$	$24^{\prime \prime} 4$	$24^{\prime} 8-7 / 8^{\prime \prime}$	$25^{\prime} 3-5 / 8^{\prime \prime}$	$26^{\prime \prime}$	$26^{\prime} 10{ }^{\prime \prime}$
25	$25^{\prime \prime} 1$	$25^{\prime} 4-1 / 8^{\prime \prime}$	25' 9-1/4"	26' 4-1/4"	2711	$27^{\prime} 11-3 / 8{ }^{\prime \prime}$
26	$26^{\prime} 1-1 / 8^{\prime \prime}$	$26^{\prime} 4-1 / 4^{\prime \prime}$	26' 9-1/2'	$27^{\prime \prime} 5$	28.2 '	29'3/4"
27	27' 1-1/8"	$27^{\prime} 4-1 / 2^{\prime \prime}$	27'9-7/8"	28' 5-5/8"	29'3"	30' 2-1/4"
28	$28^{\prime} 1-1 / 8^{\prime \prime}$	$28^{\prime} 4-3 / 4^{\prime \prime}$	$28^{\prime} 10-1 / 4^{\prime \prime}$	29'6-1/4"	30'4"	31'3-3/4"
29	29' 1-1/4"	29'4-7/8"	29' 10-5/8"	30' 6-7/8"	$31{ }^{\prime \prime}$	32'5-1/8"
30	30' 1-1/4"	$30^{\prime \prime} 5^{\prime \prime}$	30'11"	31'7-1/2'	$32^{\prime \prime} 6^{\prime \prime}$	$33^{\prime} 6-1 / 2^{\prime \prime}$
31	31' 1-3/8"	31'5-1/8"	31' 11-3/8"	$32^{\prime} 8-1 / 8^{\prime \prime}$	$33^{\prime \prime} 7$	34'7-7/8"
32	32' 1-3/8"	$32^{\prime} 5-1 / 4^{\prime \prime}$	32' 11-3/4"	33' 8-3/4"	$34 ' 8$ "	35' 9-1/4
33	33' 1-1/2"	$33^{\prime} 5-1 / 2^{\prime \prime}$	$34^{\prime} 1 / 8^{\prime \prime}$	$34^{\prime} 9-3 / 8{ }^{\prime \prime}$	$35^{\prime \prime}{ }^{\prime \prime}$	$36^{\prime} 10-3 / 4$ "
34	$34^{\prime} 1-1 / 2^{\prime \prime}$	$34^{\prime} 5-3 / 4^{\prime \prime}$	$35^{\prime} 1 / 2^{\prime \prime}$	$35^{\prime} 10 "$	$36^{\prime} 10^{\prime \prime}$	38'1/4"
35	35' 1-1/2"	35' 5-7/8"	36'7/8"	36' 10-5/8"	37'11"	39'1-5/8"

HOW TO ORDER TRIM

STEP 1:

In CentralLink ${ }^{\text {TM }}$, start by entering the Item ID.
Item ID is made of the TRIM CODE, a GAUGE CODE, and a COLOR CODE.
The TRIM CODE can be found with each drawing next to the trim's name. The GAUGE CODE and COLOR CODES are found below.

UNIVERSAL RIDGE CAP
TRIM CODE $\rightarrow \mathbf{U N}$ - Girth 24"

EXAMPLE: Universal Ridge Cap, 26 gauge, Rustic
Enter Item ID

STEP 2:
Then type the number of pieces you need

Feet	Inches
12	2

GAUGE CODES

GAUGE	CODE
24	4
26	6
29	9

COLOR CODES

SMP	PANEL GAUGE	TRIM GAUGE	CODE
Alamo		29	AW
Black		29	BK
Brilliant	26	$29 / 26$	BI
Brown	26	$29 / 26$	BR
Burgundy	26	$29 / 26$	BG
Burnished Slate	26	$29 / 26$	BS
Charcoal	26	$29 / 26$	CH
Colony	26	26	CG
Copper Metallic**	26	$29 / 26$	CM
Crimson	26	$29 / 26$	CR
Desert	26	26	DS
Forest		$29 / 26$	DG
Fern	26	26	FN
Gallery	26	$29 / 26$	GB
Galvalume	$26 / 24$	$26 / 24$	GL
Galvanized		29	ZN
Gray	26	$29 / 26$	GA
Hawaiian	26	26	HB
Hunter	26	$29 / 26$	GR
Ivory		29	IV
Light Stone	26	$29 / 26$	LS
Ocean		29	OB
Pewter		29	PG
Polar	26	26	PW
Rustic	26	$29 / 26$	RR
Tan	26	$29 / 26$	TN
Taupe		$29 / 26$	TA

ROOF TRIMS

Unless otherwise noted, trims are 26 gauge, and all angles are 90° or 45°. See page 10 for gauge and color codes.

RIDGE CAP - -pecifypitch.

RAKE/GABLE

RAKE

72RA - Girth $20.75^{"}$

BOX RAKE
72BRT - Girth 20.5"

RAKE PEAK BOX
72PBOXF - 2'6"

Specify pitch.
BOX RAKE PEAK BOX
72PBBF - з'

Specify pitch.

RAKE END CAP
REND - Left hand shown.

hOUSE RAKE

72HR - Girth $12.75^{\prime \prime}$

BOX RAKE END CAP
BREND - Left hand shown.

EAVE specifypitch. $^{\text {. }}$

HIGH-SIDE EAVE
HI - Girth 20.75"

SHORT EAVE
SEA - Girth $9.5^{\prime \prime}$

LONG EAVE
LEA- Girth $9.5^{\prime \prime}$

ROOF TRIMS

Unless otherwise noted, trims are 26 gauge, and all angles are 90° or 45°. See page 10 for gauge and color codes.

TRANSITION TRIMS

-Specify pitch

TRANSITION TRANSITION
TT - Girth 12.5"

GTL2 - Girth $14.5^{\prime \prime}$

TIE-IN
TI - Girth 10.375"

HIGH SIDE PARAPET
HSP - Girth 10.5"

ENDWALL
EW - Girth 10.25"

SIDEWALL
72ST- Girth $12{ }^{\prime \prime}$

VALLEY spectipioch

Intended for valley lengths less than 30'. Additional pallet charge will apply.

EXTENDED VALLEY
EVA- Girth 41.5"

Intended for valley lengths greater than 30 . Additional pallet charge will apply.

MISC.TRIMS

Available in $10^{\prime} 2^{\prime \prime}$ only.

FLAT SHEET
FS4-24 gauge. Girth 48.5"
FS6-26 gauge. Girth 41.5625"

10 sheets or fewer will be packaged in a roll. Additional pallet charge on orders of 10 or more.

WALL TRIMS

Unless otherwise noted, trims are 26 gauge, and all angles are 90° or 45°. See page 10 for gauge and color codes.

OUTSIDE CORNER
720U - Girth 14.25"

COMMERCIAL RAT GUARD
RGC - Girth 8.3125"

INSIDE CORNER
72IN - Girth $14.5^{\prime \prime}$

ZEE TRIM
ZE - Girth $5.875^{\prime \prime}$

WAINSCOT
WA - Girth $7.75^{"}$

BASE TRIM
BA- Girth 6.125"

ANGLE TRIMS

INSIDE ANGLE				
IA2X2 - Girth $5^{\prime \prime}$		$3^{1 \prime}$	$4^{\prime \prime}$	
IA3X3 - Girth $7^{\prime \prime}$				$\stackrel{\text { PaInt }}{ }{ }^{\text {d }}$
IA4X4 - Girth 9"				
				4

OUTSIDE ANGLE
SA2X2 - Girth $5^{\prime \prime}$
SA3X3 - Girth $7{ }^{7 \prime}$
SA4X4 - Girth 9"

FRAMED OPENING TRIMS

HEADTRIM
72HE - Girth 6 "

JAMB
72JA - Girth 5.5"

JAMB HEADER
JH - Girth $13^{\prime \prime}$

GUTTERS

GUTTERS

Unless otherwise noted, trims are 26 gauge, and all angles are 90° or 45°. See page 10 for gauge and color codes.

SCULPTURED GUTTERS

EAVE 0-4:12 PITCH
72SGU - Girth $23.75^{\prime \prime}$

HANG-ON 5:12 PITCH
72GU5 - Girth 21.9375"

EAVE 5:12 PITCH
72SGU5- Girth 25.1875"

HANG-ON 6:12 PITCH
72GU6 - Girth 22.1875"

EAVE 6:12 PITCH
72SGU6 - Girth $25.4375^{\prime \prime}$

OUTSIDE CORNER BOX OCB - specify pitch.

Use with sculptured gutters.
INSIDE CORNER BOX
ICB - Girth 25.6875"

Use with sculptured gutters.

BOX GUTTERS
Dimension "A" will change depending on chosen pitch.

DOWNSPOUTS

DOWNSPOUT W/O KICKOUT
DS - Girth 16"

DOWNSPOUT WITH KICKOUT
DK

DOWNSPOUT STRAP DSS

DOWNSPOUT OUTLET DSOUTLET

Specify pitch. 1/2"turndowns.
GUTTER STRAP 72GS9

DOWNSPOUT CONNECTOR DSLVE

GUTTER END CAP - specify pitch.
GEN- For sculptured gutters.
BGEN- For box gutters.

ACCESSORIES

FASTENERS

Fastener color availability may vary by location, contact your sales consultant for details. Order fasteners in increments of 250 pieces.

TYPE	PART \#	LENGTH	DIAMETER	HEAD	COLOR	\#BAG
METAL/METAL	114(color)MM	$11 / 4^{\prime \prime}$	\#12	5/16" Hex	all	250
METAL/METAL	2ZMM	$2 "$	\#12	5/16" Hex	galvanized	250
METAL/METAL LAP	78(color)LAP	7/8"	\#14	5/16" Hex	all	250
ZAC METAL/METAL	114ZACMM	1 1/4"	\#12	5/16" Hex	galvanized	250
ZAC METAL/METAL LAP	78ZACLAP	7/8"	\#14	5/16" Hex	galvanized	250

DOORS \& FRAMING PACKAGE

- Longer lead times may apply.

DOOR LEAF - Steel door leaf only.
3070DOOR-3x7
3070DOORW/LITE - 3 ' x 7'with window. 4070DOOR - $4^{\prime} \times 7^{\prime}$
FRAMING PACKAGE - white.
4X3070JAMB $-4.25^{\prime \prime} \times 3070$
4X4070JAMB $-4.25^{\prime \prime} \times 4070$
6X3070JAMB $-6.25^{\prime \prime} \times 3070$
6X4070JAMB $-6.25^{\prime \prime} \times 4070$
8X3070JAMB $-8.25^{\prime \prime} \times 3070$
8X4070JAMB $-8.25^{\prime \prime} \times 4070$
8X6070JAMB $-8.25^{\prime \prime} \times 6070$

Package includes: Jambs, headers, threshold, door lever with
keyed lock, hinges, and weather strip kit.
Frames are non-reversable. Swing-out only.

ACCESSORIES

SEALANT

PART\#	SIZE	COLOR
GEO(color)	10.3 oz. tube	clear, gray, white
MRS10(color)	10.3 oz. tube	call for colors
MRS10CLEAR	10.3 oz. tube	clear

CLOSURES

UNIVERSAL FOAM CLOSURE

72CLOUT - No Glue.

72CLOUTGLUE - with Glue.

Length - 3.' 100 per box

GRAYFLEX
GRAYFLEX115-24-rolls per box.
For use with hips and valleys.

Length 13.' Width 1 ". Thickness 1 1/2".

Length 25'. Width 1 1/2". Thickness 1 1/2".

FLEXOVENT
FLEXOVENT - (2) 10 ' rolls per box.

Length 10'. Width 3". Thickness 1 1/2".

MASTER PIPE FLASHING
Install in a diamond shape and not parallel to the rib

SECONDARY FRAMING

Members can be manufactured to the nearest $1 / 8^{\prime \prime}$ in length from $6^{\prime} 0$ " to $45^{\prime} 0$ ". For lengths under $6^{\prime} 0$ " or over $45^{\prime} 0$ ", call your sales consultant.

Central States has met the requirements to earn the accreditation for Cold-Formed Steel Structural and non-Structural Components Not Requiring Welding

For more information, go to www.iasonline.org.

ACCREDITED
Manufacturers of Cold
Formed Stee Components
ANGLE
CHANNEL
CEE
LGSI ZEE
ZEE

EAVE STRUTS

* Specify pitch and slope when ordering.

For low pitch add a "L" to the end of the code. For high pitch add a "H" to the end of the code.

Single Slope Up

Single Slope Down

Double Slope Up

Double Slope Down

HAT CHANNEL

PURLIN CLIPS

MINI CLIP
MINICLIP- 16 gauge.

BASE CLIP
BASECLIP- 14 gauge.

TYPE	Ax B	GAUGE	ITEM CODE RED OXIDE	ITEM CODE GALVANIZED	TYPE	WEBxAxB	GAUGE	ITEM CODE RED OXIDE	ITEM CODE GALVANIZED
Angle	2.5×2.5	14	B2514R		LGSI ZEE	$6 \times 23 / 8 \times 2 \frac{1}{8}$	16	Z62516R	Z62516Z
Angle	3×3	16	B316R	B316Z	LGSI ZEE	$6 \times 23 / 8 \times 21 / 8$	14	Z62514R	Z62514Z
Angle	3×3	14	B314R	B314Z	LGSI ZEE	$8 \times 23 / 8 \times 21 / 8$	16	Z82516R	Z82516Z
Angle	4×2	16	B4216R	B4216Z	LGSI ZEE	$8 \times 21 / 8 \times 21 / 8$	14	Z82514R	Z82514Z
Angle	4×2	14	B4214R	B4214Z	LGSI ZEE	$8 \times 23 / 8 \times 21 / 8$	12	Z82512R	Z82512Z
Angle	4×3	16	B4316R		LGSI ZEE	$8 \times 33 / 8 \times 31 / 8$	16	Z83516R	Z83516Z
					LGSI ZEE	$8 \times 33 / 8 \times 31 / 8$	14	Z83514R	Z83514Z
TYPE	WEB \times Ax B	GAUGE	RED OXIDE	GALVANIZED	LGSI ZEE	$8 \times 33 / 8 \times 31 / 8$	12	Z83512R	Z83512Z
Channel	$4.25 \times 2.35 \times 2.35$	16	U4216R	U4216Z	LGSI ZEE	$10 \times 23 / 8 \times 21 / 8$	16	Z102516R	Z102516Z
Channel	$4.25 \times 2.85 \times 2.85$	16	U42516R	U42516Z	LGSI ZEE	$10 \times 23 / 8 \times 21 / 8$	14	Z102514R	Z102514Z
Channel	$4.25 \times 2.85 \times 2.85$	14	U42514R	U42514Z	LGSI ZEE	$10 \times 23 / 8 \times 21 / 8$	12	Z102512R	Z102512Z
Channel	$4.25 \times 2.85 \times 2.85$	12	U42512R	U42512Z	LGSI ZEE	$10 \times 27 / 8 \times 25 / 8$	14	Z10314R	Z10314Z
Channel	$6.25 \times 2.85 \times 2.85$	16	U62516R	U62516Z	LGSI ZEE	$10 \times 27 / 8 \times 25 / 8$	12	Z10312R	
Channel	$6.25 \times 2.85 \times 2.85$	14	U62514R	U62514Z	LGSI ZEE	$12 \times 23 / 8 \times 21 / 8$	14	Z122514R	Z122514Z
Channel	$8.25 \times 2.85 \times 2.85$	16	U82516R	U82516Z	LGSI ZEE	$12 \times 23 / 8 \times 21 / 8$	12	Z122512R	Z122512Z
Channel	$8.25 \times 2.85 \times 2.85$	14	U82514R	U82514Z	LGSI ZEE	$12 \times 33 / 8 \times 311 / 8$	14	Z123514R	Z123514Z
Channel	$8.25 \times 2.85 \times 2.85$	12	U82512R	U82512Z	LGSI ZEE	$12 \times 33 / 8 \times 31 / 8$	12	Z123512R	Z123512Z
TYPE	WEB \times Ax ${ }^{\text {a }}$	GAUGE	RED OXIDE	GALVANIZED	LGSI ZEE	$12 \times 33 / 8 \times 35 / 8$	16	Z12416R	Z12416Z
Eave Strut	$6 \times 4 \times 3$	16	E64316R*	E64316Z*					
Eave Strut	$6 \times 4 \times 3$	14	E64314R*	E64314Z*	TYPE	WEB \times AxB	GAUGE	RED OXIDE	GALVANIZED
Eave Strut	$6 \times 4 \times 3$	12	E64312R*	E64312Z*	ZEE	$4 \times 2 \times 2$	16	Z4216R	Z4216Z
Eave Strut	$8 \times 4 \times 3$	14	E84314R*	E84314Z*	ZEE	$4 \times 2.5 \times 2.5$	16	Z42516R	Z42516Z
Eave Strut	$8 \times 4 \times 3$	12	E84312R*	E84312Z*	ZEE	$4 \times 2.5 \times 2.5$	14	Z42514R	Z42514Z
Eave Strut	$8 \times 5 \times 3$	14	E85314R*	E85314Z*	ZEE	$4 \times 2.5 \times 2.5$	12	Z42512R	Z42512Z
Eave Strut	$8 \times 5 \times 3$	12	E85312R*	E85312Z*	ZEE	$4 \times 3.5 \times 3.5$	16	Z43516R	Z43516Z
Eave Strut	$8 \times 5 \times 5$	14	E85514R*		ZEE	$4 \times 3.5 \times 3.5$	14	Z43514R	Z43514Z
Eave Strut	$10 \times 5 \times 3$	14	E105314R*		ZEE	$6 \times 2.5 \times 2.5$	16	Z62516R	Z62516Z
*For low pitch add a "L" oo the end of the code. For high pitch add a "H" to the end of the code.					ZEE	$6 \times 2.5 \times 2.5$	14	Z62514R	Z62514Z
					ZEE	$8 \times 2.5 \times 2.5$	16	Z82516R	Z82516Z
TYPE	WEBxAxB	GAUG	RED OXIDE	GALVANIZED	ZEE	$8 \times 2.5 \times 2.5$	14	Z82514R	Z82514Z
CEE	$4 \times 2 \times 2$	16	C4216R	C4216Z	ZEE	$8 \times 2.5 \times 2.5$	12	Z82512R	Z82512Z
CEE	$4 \times 2.5 \times 2.5$	16	C42516R	C42516Z	ZEE	$8 \times 3.5 \times 3.5$	16	Z83516R	Z83516Z
CEE	$4 \times 2.5 \times 2.5$	14	C42514R	C42514Z	ZEE	$8 \times 3.5 \times 3.5$	14	Z83514R	Z83514Z
CEE	$4 \times 2.5 \times 2.5$	12	C42512R	C42512Z	ZEE	$8 \times 3.5 \times 3.5$	12	Z83512R	Z83512Z
CEE	$4 \times 3.5 \times 3.5$	16	C43516R	C43516Z	ZEE	$9 \times 3 \times 3$	14	Z9314R	Z9314Z
CEE	$4 \times 3.5 \times 3.5$	14	C43514R	C43514Z	ZEE	$9 \times 3 \times 3$	12	Z9312R	Z9312Z
CEE	$6 \times 2.5 \times 2.5$	16	C62516R	C62516Z	ZEE	$10 \times 2.5 \times 2.5$	16	Z102516R	Z102516Z
CEE	$6 \times 2.5 \times 2.5$	14	C62514R	C62514Z	ZEE	$10 \times 2.5 \times 2.5$	14	Z102514R	Z102514Z
CEE	$8 \times 2.5 \times 2.5$	16	C82516R	C82516Z	ZEE	$10 \times 2.5 \times 2.5$	12	Z102512R	Z102512Z
CEE	$8 \times 2.5 \times 2.5$	14	C82514R	C82514Z	ZEE	$10 \times 3.5 \times 3.5$	14	Z103514R	Z103514Z
CEE	$8 \times 2.5 \times 2.5$	12	C82512R	C82512Z	ZEE	$10 \times 3.5 \times 3.5$	12	Z103512R	Z103512Z
CEE	$8 \times 3.5 \times 3.5$	16	C83516R	C83516Z	ZEE	$12 \times 2.5 \times 2.5$	14	Z122514R	Z122514Z
CEE	$8 \times 3.5 \times 3.5$	14	C83514R	C83514Z	ZEE	$12 \times 2.5 \times 2.5$	12	Z122512R	Z122512Z
CEE	$8 \times 3.5 \times 3.5$	12	C83512R	C83512Z	ZEE	$12 \times 3.5 \times 3.5$	14	Z123514R	Z123514Z
CEE	$9 \times 3 \times 3$	14	C9314R	C9314Z	ZEE	$12 \times 3.5 \times 3.5$	12	Z123512R	Z123512Z
CEE	$9 \times 3 \times 3$	12	C9312R	C9312Z	ZEE	$12 \times 4 \times 4$	16	Z12416R	Z12416Z
CEE	$10 \times 2.5 \times 2.5$	16	C102516R	C102516Z					
CEE	$10 \times 2.5 \times 2.5$	14	C102514R	C102514Z					
CEE	$10 \times 2.5 \times 2.5$	12	C102512R	C102512Z					
CEE	$10 \times 3.5 \times 3.5$	14	C103514R	C103514Z					
CEE	$10 \times 3.5 \times 3.5$	12	C103512R	C103512Z					
CEE	$12 \times 2.5 \times 2.5$	14	C122514R	C122514Z					
CEE	$12 \times 2.5 \times 2.5$	12	C122512R	C122512Z					
CEE	$12 \times 3.5 \times 3.5$	14	C123514R	C123514Z					
CEE	$12 \times 3.5 \times 3.5$	12	C123512R	C123512Z					
CEE	$12 \times 4 \times 4$	16	C12416R	C12416Z					

CENTRAL STATES MANUFACTURING, INC.
Effective 09/2021 • Information subject to change

STANDARD PUNCH PATTERNS

Punch capabilities vary by location. Call for pricing and availability on special punching.
Punches cannot be made on secondary framing members shorter than 3".
Holes are punched to accommodate 1/2" diameter bolts.

Standard hole sizes:

LOCATION	$5 / 16^{\prime \prime}$ ROUND	$5 / 8^{\prime \prime}$ ROUND	$5 / 8^{\prime \prime} \mathrm{X} 3 / 4^{\prime \prime}$ SLOT
Lowell	X	X	X
Jasper	X		X
Cedar Hill		X	X
Seguin	X	X	
Claysburg		X	X

FLANGE PATTERNS

 Punches can be placed on either or both ends.
EAVE STRUT FOR 4" LEG

ES4

PATTERN D-OPTIONAL FLANGE PPD

Use with web pattern A.

EAVE STRUT FOR 5" LEG

ES5

PATTERN E-OPTIONAL FLANGE PPE

EAVE STRUT FOR 5" LEG
ES134

PATTERN F - OPTIONAL FLANGE PPF

Use with web pattern B.

Use with web pattern C.

STANDARD PUNCH PATTERNS

WEB PATTERNS

Punches can be placed on either or both ends.

END PUNCH
PPEP

PATTERN H STANDARD WEB END PPH

SIMPLE SPAN PUNCH
PPSS

LONG LAP PUNCH

Minimum part length 7^{\prime} total, $3^{\prime} 6^{\prime \prime}$ one end.

PATTERN A - STANDARD WEB - 9 ' Minimum length if punched on both ends; $4^{\prime} 6 "$ if punched on one end.
PPA

PATTERN B - STANDARD WEB - $12^{\prime} 5^{\prime \prime}$ Minimum length if punched on both ends; $6^{\prime} 2.5^{\prime \prime}$ if punched on one end.
PPB

PATTERN C - STANDARD WEB - 7^{\prime} Minimum length if punched on both ends; $3^{\prime} 6$ " if punched on one end.
PPC

NOTES
1

centralstatesco.com

[^0]: NOTICE: The application and detail drawings in this manual are strictly for illustration purposes and may not be applicable to all building designs or product installations. Projects should conform to local building codes.

